Rabu, 04 Maret 2009

Sri Sultan HB IX, Bapak Pandu Indonesia

.

bpk-pramuka.jpg

Sri Sultan Hamengkubuwono IX ( Sompilan Ngasem, Yogyakarta, 12 April 1912 - Washington, DC, AS, 1 Oktober 1988 ) adalah seorang Raja Kasultanan Yogyakarta dan Gubernur Daerah Istimewa Yogyakarta. Beliau juga Wakil Presiden Indonesia yang kedua antara tahun 1973-1978. Beliau juga dikenal sebagai Bapak Pramuka Indonesia, dan pernah menjabat sebagai Ketua Kwartir Nasional Gerakan Pramuka (1961 - 1974)

Biografi
Lahir di Yogyakarta dengan nama GRM Dorojatun pada 12 April 1912, HamengkubuwonoIX adalah putra dari Sri Sultan Hamengkubuwono VIII dan Raden Ajeng Kustilah. Diumur 4 tahun Hamengkubuwono IX tinggal pisah dari keluarganya. Dia memperoleh pendidikan di HIS di Yogyakarta, MULO di Semarang, dan AMS di Bandung. Pada tahun 1930-an beliau berkuliah di Universiteit Leiden, Belanda (”SultanHenkie”).Hamengkubuwono IX dinobatkan sebagai Sultan Yogyakarta pada tanggal 18 Maret 1940 dengan gelar “Sampeyan Dalem Ingkang Sinuwun Kanjeng Sultan HamengkubuwonoSenopati Ing Alogo Ngabdurrokhman Sayidin Panotogomo Kholifatulloh Ingkang Kaping Songo”. Beliau merupakan sultan yang menentang penjajahan Belanda dan mendorong kemerdekaan Indonesia. Selain itu, dia juga mendorong agar pemerintah RI memberi status khusus bagi Yogyakarta dengan predikat “Istimewa”. Sejak 1946 beliau pernah beberapa kali menjabat menteri pada kabinet yang dipimpin Presiden Soekarno. Jabatan resminya pada tahun 1966 adalah ialah Menteri Utama di bidang Ekuin.
.
Pada tahun 1973 beliau diangkat sebagai wakil presiden. Pada akhir masa jabatannya pada tahun 1978, beliau menolak untuk dipilih kembali sebagai wakil presiden dengan alasan kesehatan. Namun, ada rumor yang mengatakan bahwa alasan sebenarnya ia mundur adalah karena tak menyukai Presiden Soeharto yang represif seperti pada Peristiwa Malari dan hanyut pada KKN.Minggu malam pada 1 Oktober 1988 ia wafat di George Washington University Medical Centre, Amerika Serikat dan dimakamkan di pemakaman para sultan Mataram di Imogiri.


Pesan Terakhir Baden Powell


ein BildBaden Powell lahir di London, Inggris pada tanggal 22 Februari 1857 dengan nama Robert Stephenson Smyth Baden Powell. Nama Baden Powell diambil dari nama ayahnya Domine HG Baden Powell, seorang Profesor geometri di Universitas Oxford. Ayahnya meninggal paad saat Stephenson masih berusia 3 tahun. Ibunya adalah putri seorang Admiral Kerajaan Inggris bernama WT Smyth. Jadi Boden Powell merupakan keturunan seorang ilmuwan dan keturunan petualang di pihak lain.

Tahun 1870, Baden Powell memasuki Charterhouse School di London dengan beasiswa. Ia bukan seorang siswa yang luar biasa , tetapi ia adalah seorang yang giat. Ketangkasannya dalam bidang olahraga terutama sebagai penjaga gawang kesebelasan sekolah dan bakatnya dalam bidang seni seperti drama dan musik menjadikannya pusat perhatian. Baden Powell jugai pandai menggambar, bakat ini kemudian memudahkannya menghiasi karangan-karangannya sendiri.
Baden Powell menamatkan pendidikan di Charterhouse School pada usia sembilan belas tahun. Beberapa waktu setelah sekolahnya selesai, Baden Powell berangkat ke India sebagai pembantu Letnan dalam resimennya yang terkenal pada perang Krim - Charge of the Light Brigade. Selain prestasinya dalam ketentaraan - menjadi kapten pada usia 26 tahun - ia dikenal sebagai pemburu babi hutan di India dan memeperoleh piala “pigstiking” . Olahraga ini sangat dihargai di India karena babi hutan dianggap satu-satunya binatang yang berani minum bersama harimau.

Pada tahun 1887, Baden Powell berangkat ke Afrika , untuk ikut serta berperang melawan suku Zulu , kemudian Suku Anshati dan Suku Matabele. Karena keberanian dan kepandaiannya penduduk Afrika menjulukinya dengan “impeesa” - srigala yang tidak pernah tidur. Karena kecakapannya itu, tahun 1899 pangkatnya telah dinaikkan menjadi kolonel.
Pada waktu itu hubungan Inggris dengan Transval (Afrika Selatan) telah memuncak pada titik perpecahan. Baden Powell membentuk dua bataliyon pemburu berkuda dan berangkat ke Mafeking. Siapa yang menduduki Mafeking, berkuasa di Afrika Selatan”. Demikian dikatakan penduduk asli Afrika . Perang pecah pada tanggal 13 Oktober 1899. Selama 217 hari Baden Powell berhasil menguasai dan mempertahankan Mafeking dari kepungan Bangsa Boer yanng jumlahnya jauh lebih besar. Baden Powell dapat mem[ertahankan kota tersebut sampai akhirnya datang bantuan pada tanggal 18 Mei 1900. Boden Powell kemudian berpangkat Mayor Jenderal dan menjadi pahlawan bangsanya.

Tahun 1901 Baden Powell kembali ke Inggris . Ia kemudian menulis buku yang diperuntukan bagi prajurit muda “Aids to Scouting”. Buku tersebut sangat terkenal dan digemari bukan saja oleh para prajurit melainkan juga oleh masyarakat Inggris khususnya para remaja. Dalam satu bulan saja terjual 60.000 buku , karena masyarakat muda dan tua menggemari buku ini . Surat-suratpun berdatangan terutama dair anak-anak yang menginginkan sesuatu yang lebih kongkrit dari cerita dalam buku. Baden Powell menyadari suatu panggilan untuk membantu anak-anak negaranya.

Atas desakan tersebut berkumpulah 21 orang pemuda dari berbagai lapisan masyarakat yang bergabung dalam Boys Brigade di bawah pimpinan Wiliam Smyth mengikuti perkemahan pada tanggal 25 Juli 1907 di Brownsea Island selama delapan hari. Dalam perkemahan itu dipraktekan cara-cara memasak , berenang , menyelidik, merintis, permainan, mengembara serta api unggun dan lain-lain. Perkemahan tesebut terselenggara dengan baik dan kemudian dijadikan sebagai perkemahan Pramuka pertama.

Sesudah perkemahan tersebut , dua minggu sekali diterbitkan buletin “A Handbook for instruction in Good Citinzenship Trough Woodcraft”. Isi buletin ini diambil dari buku Aids to Scouting dan pengalaman saat berkemah di Brownsea Island. Setelah enam kali terbit buletin ini kemudian dibukukan menjadi buku “Scouting for Boys”. Beberapa saat setelah buku ini diterbitkan dan dijual di toko-toko buku maupun tempat penjualan surat kabar , maka terbentuklah regu-regu dan pasukan dari berbagai lapisan masyarakat. Dengan terbitnya buku ini kemudian menyebar ke seluruh Inggris, Eropa kemudian benua-benua yang lain.

Setahun kemudian Baden Powell menyelenggarakan perkemahan kepramukaan yang kedua di tempat yang sama dengan jumlah Pramuka sebanyak 1.500 anak. Dua tahun kemudian menjadi 109.000 anak dan diikuti oleh negara-negara Eropa yang akhirnya menyebar ke seluruh dunia. Akhirnya Baden Powell memutuskan untuk mengundurkan diri dari ketentaraan pada tahun 1910 dengan pangkat Letnan Jendral dan mengabdikan dirinya untuk menumbuhkembangkan kepramukaan .

Pada tahun 1912 , Baden Powell mengadakan perjalanan keliling dunia untuk meninjau perkembangan kepramukaan di berbagai negara. Pada tahun inilah permulaan kepramukaan dinyatakan sebagai persaudaraan sedunia . Tahun1920 di London berkumpul Pramuka dari seluruh dunia untuk mengadakan Jambore pertama di dunia . pada malam terakhir yaitu pada tanggal 6 Agustus 1920 , Baden Powell diangkat sebagai Chief Scout of the world .Bapak Pramuka sedunia. Pada tahun 1929, Baden Powell dianugerahi Raja George V dengan julukan bangsawan Lord Baden Powell of Gilwell.

Di usianya ke delapanpuluh tahun ia kembali ke Afrika yang dicintainya. Walaupun Baden Powell tidak menyetujui penjajahan yang dilakukan oleh negaranya , ia telah menunjukan kesetiaan terhadap negara dan rajanya . Baden Powell meninggal di Kenya di suatu tempat yang tertera pada tanggal 8 Januari 1941 , sebulan sebelum ulang tahunnya yang keelapan puluh empat.

Pesan Terakhir Baden Powell
Pramuka-pramuka yang kucinta..

Jika kamu pernah melihat sandiwara Peter Pan, maka kamu akan melihat mengapa pemimpin bajak laut selalu membuat pesan-pesannya sebelum meninggal, karena ia takut, kalau-kalau tidak akan sempat lagi mengeluarkan isi hatinya, jika saat ia menutup matanya telah tiba.

Demikian halnya dengan diriku. Meskipun waktu ini aku belum meninggal, namun saat itu akan tiba juga bagiku. Oleh karena itu aku ingin menyampaikan kepadamu sekedar kata perpisahan untuk minta diri.

Ingatlah, ini adalah pesanku yang terakhir bagimu. Oleh karena itu, renungkanlah !


Hidupku adalah sangat bahagia dan harapanku mudah-mudahan kamu sekalian masing-masing juga mengenyam kebahagiaan dalam hidupmu sepeti aku. Saya yakin bahwa Tuhan menciptakan kita dalam dunia yang bahagia ini untuk hidup berbahagia dan bergembira. Kebahagiaan tidak timbul dari kekayaan, juga tidak dari jabatan yang menguntungkan, ataupun kesenangan bagi diri sendiri. Jalan menuju kebahagiaan adalah membuat dirimu lahir dan batin sehat dan kuat pada waktu kamu masih anak-anak, sehingga kamu dapat berguna bagi sesamamu dan dapat menikmati hidup, jika kamu kelak telah dewasa. Usaha menyelidiki alam akan menimbulkan kesadaran dalam hatimu, betapa banyaknya keindahan dan keajaiban yang diciptakan Tuhan di dunia ini supaya kamu dapat menikmatinya.

Lebih baik melihat kebagusan-kebagusan suatu hal daripada mencari kejelekan-kejelekan. Jalan nyata yang menuju kebahagiaan ialah membahagiakan orang lain. Berusahalah agar kamu dapat meninggalkan dunia ini dalam keadaan yang lebih baik daripada tatkala kamu tiba didalamnya. Dan bila giliranmu tiba untuk meninggal, maka kamu akan meninggal dengan puas, karena kamu tidak menyia-nyiakan waktumu, akan tetapi kamu telah mempergunakannya sebaik-baiknya. Sedialah untuk hidup dan meninggal dengan bahagia. Masukkanlah paham itu senantiasa dalam Janji Pramukamu, meskipun kamu sudah bukan kanak-kanak lagi dan Tuhan akan berkenan memberikan karunia pertolongan padamu dalam usahamu.

Raimuna NAsional 2012 di Papua

Provinsi Papua mendapat kepercayaan menjadi tuan rumah perhelatan akbar perkemahan Raimuna Gerakan Pramuka tahun 2012.

Ketua Kwartir Daerah (Kwarda) Provinsi Papua, Amos Asmuruf SH di Biak, Senin, mengatakan jajaran Kwartir Cabang Pramuka kabupaten/kota se Papua diharapkan menyiapkan diri menyambut agenda nasional Raimuna nasional di tanah Papua.

"Sebagai tuan rumah Raimuna nasional kita patut berbangga sebab daerah ini dikunjungi sekitar 10.000 anggota Pramuka dari seluruh Indonesia," ungkap Amos.


Ia mengatakan, untuk menghadapi event nasional Pramuka di tanah Papua tahun 2012 pihak Kwarda Papua akan menyiapkan sarana fisik bumi perkemahan Pramuka di Buper Waena, terutama menyangkut fasilitas mandi cuci kakus (MCK).

Sedangkan sarana pendukung lainnya, lanjut Amos, seperti fasilitas gedung tempat kegiatan perkemahan bagi peserta sudah tersedia di areal Bumi Perkemahan Pramuka Buper Waena Kota Jayapura.

Menyinggung dampak kegiatan Pramuka di Papua, menurut Amos, cukup besar terutama dilihat dari peredaran uang yang masuk yang dibawa para peserta asal kabupaten/kota dan provinsi di Indonesia untuk keperluan perkemahan Raimuna itu.

Bagi penduduk lokal seperti tukang ojek maupun pedagang sayur dan lain sebagainya, lanjutnya, akan mendapat penghasilan tambahan dari kegiatan Raimuna tingkat nasional yang berlangsung di Bumi Perkemahan Waena itu.

"Saya kira selama event nasional itu berlangsung akan banyak aktivitas peserta dari luar Papua berbelanja ke berbagai tempat di Papua sehingga memberikan kontribusi bagi penduduk setempat," ujar Amos.

Kata Raimuna berasal dari bahasa Ambai, daerah Yapen Timur, kabupaten Yapen Waropen, Papua. Raimuna berasal dari kata Rai dan Muna. Rai berarti sekelompok orang yang berkumpul untuk mencapai tujuan tertentu yang ditetapkan bersama. Sedangkan Muna adalah daya kekuatan jiwa seseorang yang berpengaruh baik dalam mencapai kesuksesan. Dengan demikian, raimuna memiliki arti sekelompok orang yang hidup dalam suatu kekuatan dengan dijiwai oleh sesuatu daya kekuatan yang selalu memberi semangat tinggi dalam mencapai tujuan.


Amos mengimbau, semua Bupati dan Walikota se Papua sebagai majelis pembimbing Gerakan Pramuka segera menyiapkan diri secara moral dan finansial guna mendukung agenda nasional Perkemahan Raimuna tingkat nasional.


Selasa, 03 Maret 2009

1. PENDAHULUAN

Ketika seseorang berbicara mengenai biogas, biasanya yang dimaksud adalah gas yang dihasilkan oleh proses biologis yang anaerob (tanpa bersentuhan dengan oksigen bebas) yang terdiri dari kombinasi methane (CH4), karbon dioksida (CO2), Air dalam bentuk uap (H20), dan beberapa gas lain seperti hidrogen sulfida (H2S), gas nitrogen (N2), gas hidrogen (H2) dan jenis gas lainnya dalam jumlah kecil.
Secara lebih singkat, biogas dapat diartikan sebagai “gas yang diproduksi oleh makhluk hidup”.

Dalam artikel seri pertama ini penulis tidak akan menceritakan mengenai konsep konsep yang melatarbelakangi biogas secara mendalam untuk menghindari terlihat seperti text-book :). Akan tetapi disini penulis akan menceritakan dan mendokumentasikan pengalaman penulis mengenai pembuatan dan instalasi pembangkit (digester) biogas di areal Manglayang Farm yang menggunakan bahan baku kotoran sapi seperti yang telah penulis lakukan.

Pembangkit yang kami buat adalah pembangkit biogas terbuat dari plastik polyethylene tubular dengan tipe pembangkit horizontal continous feed, biasa disebut juga tipe plug-flow, atau terkadang disebut juga sebagai model Vietnam karena dikembangkan terakhir disana.

Pertimbangan kami mengadopsi tipe ini adalah: a. Biaya relatif rendah b. Instalasi relatif mudah c. Bahan serta alat yang digunakan dapat ditemukan di sekitar kota Bandung.

Ada banyak tipe pembangkit biogas yang telah diciptakan dan dikembangkan. Tidak kurang dari Kolombia, Etiopia, Tanzania, Vietnam dan Kamboja telah mengembangkan pembangkit dengan harga murah, dengan tujuan utama mereduksi biaya produksi dengan menggunakan bahan bahan baku yang tersedia di lokal dan instalasi dan proses operasi yang sederhana. (Botero dan preston 1987; Solarte 1995; Chater 1986; Sarwatt et al 1995; Soeurn 1994; Khan 1996).
Model yang digunakan ini berbasis dari model “red mud PVC” yang dikembangkan oleh Taiwan seperti dijelaskan oleh Pound et al (1981) yang kemudian lebih disederhanakan lagi oleh Preston dan kawan kawan untuk pertama kali di Etiopia (Preston unpubl.), dan Kolombia (Botero dan Preston 1987) dan terakhir dikembangkan di Vietnam (Bui Xuan An et al 1994).

Tujuan utama kami melakukan instalasi pembangkit biogas di areal Manglayang Farm adalah bukan pencapaian produksi gas yang maksimal. Namun selain sebagai proses pembelajaran teknologi, juga untuk mendapatkan hasil keluaran dari pembangkit biogas yang merupakan pupuk organik dengan kualitas baik.


2. PERSIAPAN INFRASTRUKTUR PEMBANGKIT

Mari kita lihat konsep dasar alur proses produksi biogas.

Diagram Alur Proses Produksi Biogas
Gambar 1: Diagram Alur Proses produksi biogas

Tahapan awal adalah mempersiapkan bahan baku organik yang dapat dicerna oleh bakteri dan mikroorganisme yang ada didalam pembangkit biogas. Dalam hal ini karena instalasi biogas dilakukan di areal peternakan sapi perah, bahan baku utama yang digunakan adalah kotoran sapi. Perlu diketahui, bahwa apabila yang menjadi tujuan utama dari instalasi biogas adalah pencapaian produksi gas yang optimal, kotoran sapi bukan bahan baku yang baik.

Tahap selanjutnya adalah yang kami sebut dengan fase input. Di dalam fase ini dilakukan pengolahan terhadap bahan baku agar dapat memenuhi persyaratan yang telah kami tentukan sebelumnya yaitu:

a. Filtrasi pertama.
Target dari penyaringan ini adalah bahan baku tidak mengandung serat yang terlalu kasar. Serat kasar disini berarti sampah sampah atau kotoran kandang selain kotoran ternak, seperti batang dan daun keras, sisa batang rumput dan kotoran lainnya yang sebagian besar adalah sisa sisa pakan ternak yang terlalu kasar. Hal ini dapat menimbulkan scum/buih dan residu di dalam pembangkit yang dapat mengurangi kinerja dari pembangkit itu sendiri.

b. Pencampuran dengan air dan pengadukan.
Dilakukan pencampuran kotoran sapi dan air. Air sangat dibutuhkan oleh mikroorganisme di dalam pembangkit sebagai media transpor. Oleh karenanya tahapan ini cukup krusial mengingat campuran yang terlalu encer atau terlalu kental dapat mengganggu kinerja pembangkit dan menyulitkan dalam penanganan effluent (hasil keluaran pembangkit biogas). Sebagai panduan dasar, campuran yang baik berkisar antara 7% - 9% bahan padat. Disini juga dilakukan pengadukan agar campuran bahan organik – air dapat tercampur dengan homogen.

c. Filtrasi kedua
Target kami dengan melakukan penyaringan tahap kedua adalah untuk memisahkan kotoran sapi sebagai bahan baku organik pembangkit dengan bahan anorganik lain yang lolos di saringan tahap pertama terutama pasir dan batu batu kecil. Proses ini cukup penting mengingat kandungan bahan anorganik (pasir) di dalam pembangkit tidak dapat dicerna oleh bakteri dan dapat menyebabkan residu di dasar pembangkit.

d. Pemasukkan bahan organik
Kami membuat semacam katup/keran sederhana agar proses pemasukkan bahan organik kedalam pembangkit dapat dilakukan dengan semudah mungkin.

Memang cukup banyak parameter parameter yang perlu diperhatikan dalam pembuatan pembangkit biogas ini (parameter dan syarat syarat lain seperti temperatur, rasio karbon – nitrogen, derajat keasaman dan lainnya mudah mudahan dapat kami singgung di tulisan selanjutnya). Nampaknya hal hal inilah yang menjadi kendala operasi dalam pemasyarakatan dan penggunaan pembangkit biogas secara masal di banyak negara.

Target kami dalam melakukan desain pembangkit dan infrastruktur ini adalah pengerjaan dan operasi dapat dilakukan oleh anak kandang atau pegawai kebun. Sehingga proses proses yang rumit ini harus dibuat sesederhana mungkin dan tidak menambah beban pekerjaan pegawai lebih banyak.


2.1 BAK MIXER

Di dalam bak ini kotoran ternak dicampur dengan air untuk kemudian dialirkan menuju pembangkit. Ukuran bak pencampur yang kami buat adalah 50x50x50cm sehingga volume yang dapat ditampung dengan kapasitas maksimum 80% bak adalah 100 liter. Desain bak permanen dengan bahan semen dan batu bata.

Bak Mixer - 1
Gambar 2: Bak mixer


Bak mixer ini memiliki celah miring di kedua sisinya sebagai tumpuan filter/screen untuk memisahkan serat yang terlalu kasar. Screen ini dapat diangkat untuk dibersihkan.

Bak Mixer - 2
Gambar 3: Bak mixer dengan screen terpasang

Screen terbuat dari kawat ayam dengan mesh +/- 1cm. Sebelumnya kami sudah mencoba dengan mesh yang lebih rapat, namun ternyata kotoran sapi tidak dapat lewat mesh tersebut. Dengan mesh 1cm inipun kami masih merasa terlalu rapat. Pada gambar terlihat bahwa serat yang kasar tersangkut pada screen.

Desain ini kami anggap masih belum cukup baik, karena untuk melakukan penyaringan, masih diperlukan effort yang besar untuk mengayak kotoran tersebut.

Bak Mixer - 3
Gambar 4: Proses pengayakan kotoran, masih membutuhkan usaha yang cukup keras.

Di bagian belakang bak ini (arah kiri pada gambar 4) terdapat 1 buah lubang (¾”) untuk overflow apabila air terlalu penuh atau apabila bak terisi air hujan. Kemudian 1 lubang lagi (2”) untuk pencucian/drainase dan 1 lubang (PVC 4”) dengan sumbat untuk pengaliran bahan baku ke dalam pembangkit.


2.2 PARIT PEMBANGKIT

Pembangkit yang terbuat dari plastik polyethylene kami tempatkan semi-underground, setengah terkubur di dalam tanah. Untuk itu perlu dibuatkan semacam parit sebagai wadah agar pembangkit yang berbentuk tubular dapat disimpan dengan baik.
Parit ini berukuran panjang 6m, lebar atas 95cm, lebar bawah 75cm, tinggi di ujung input adalah 85cm, dan tinggi di ujung output 95cm. Untuk lebih jelas, perhatikan skema berikut.
Skema Parit Pembangkit
Gambar 5: Skema parit pembangkit.
(1) Dimensi Parit. (2). Bentuk parit yang cekung pada dasar, membentuk mangkok.

Dimensi parit yang dibuat sangat tergantung pada dimensi pembangkit yang akan dibuat dan tentu ukuran plastik polyethylene (PE) yang tersedia di pasaran. Kami menggunakan plastik PE dengan lebar bentang 150cm, sehingga apabila membentuk tubular, diameternya sekitar 95cm. Kapasitas pembangkit yang kami buat kurang lebih 4000 liter. Parit ini memiliki inklinasi sekitar 2 – 3 derajat turun mengarah ke lubang output. Inklinasi ini dibuat untuk memaksimalkan volume pembangkit yang dapat diisi oleh bahan baku.

Setelah dilakukan penggalian parit, pembentukan dinding parit dapat dilakukan dengan campuran semen-tanah, semen-batu bata, atau seperti yang kami lakukan, menggunakan campuran air dan tanah saja. Hal ini dilakukan untuk menekan biaya produksi. Tanah galian dicampur dengan air dan diaduk aduk dengan cara di injak injak hingga didapatkan tanah yang memiliki tekstur liat. Setelahnya dengan menggunakan sendok tembok dapat dibuat dinding, persis seperti menembok dengan semen. Cara ini sangat murah dan sederhana, namun memang dari sisi ketahanan tidak baik, karena pengaruh suhu, dan campuran yang tidak homogen dinding tanah akan mudah retak dan pecah. Dinding ini perlu kami buat karena lokasi pembangkit berada di tanah urugan, sebaiknya memang parit dibuat di tanah bukan urugan, sehingga pembuatan dinding dapat memanfaatkan kekerasan tanah yang ada.


Parit Pembangkit - 2
Gambar 6: Parit pembangkit, bagian atas adalah bak mixer. Parit Pembangkit - 1
Gambar 7: Parit pembangkit, sudah dibuatkan tiang tiang untuk atap

Seperti terlihat pada gambar, bagian atas parit untuk sementara ditutupi dengan bekas karung agar tidak pecah sebelum kantung plastik pembangkit masuk ke dalamnya. Yang perlu diperhatikan juga adalah kerataan permukaan pinggir dan dasar parit. Pastikan tidak ada batu atau akar yang tersisa yang dapat melukai kantung plastik. Selain itu buatkan selokan kecil di sekeliling parit agar air tidak masuk ke dalam instalasi pembangkit.

PEMBANGKIT BIOGAS

Desain pembangkit biogas dari kantung plastik polyethylene ini adalah sebagai berikut:
Skema Pembangkit Biogas
Gambar 8: Skema pembangkit biogas dari kantung plastik polyethylene.

Bagian cukup penting adalah yang ditandai dengan nomor 1 dan 2, dimana nomor 1 adalah gas outlet. Skemanya adalah sebagai berikut:

Skema Gas Outlet
Gambar 9: Skema gas outlet. Kami menggunakan PVC ¾”.

Kami menggunakan koneksi selang 5/8” dari gas outlet menuju botol jebakan uap air. Sayang kualitas selang yang digunakan kurang baik karena tidak anti tekuk. Kami merencanakan akan menggantinya apabila ada kesempatan. Selang di klem ke socket selang plastik kemudian disambungkan ke PVC SDD dan dengan menggunakan lem PVC disambung ke pipa PVC ¾”. Dari situ sebagai washer/cincin digunakan plastik yang dipotong dari jerigen bekas oli yang menjepit washer kedua yaitu karet ban dalam mobil. Di dalam kantung plastik, juga terdapat 2 buah washer dan SDL. Trik lain yang kami lakukan adalah memotong ujung bawah SDL, sehingga dasar permukaan SDL lebih tinggi terhadap cairan kotoran. Hal ini untuk menghindari terjadinya mampet pada saluran gas outlet.

Kami menyarankan untuk menggunakan karet ban dalam mobil untuk membuat washer, karena lebih tebal, selain itu karena dalam kegiatan ini banyak digunakan karet ban (motor), harap perhatikan kualitas karet ban tersebut, terkadang ada yang karetnya sudah keras sehingga mudah robek.


2.3.1 Mempersiapan Kantung Plastik Polyethylene

Kantung plastik polyethylene dengan lebar 150cm ini kami dapatkan di toko plastik di seputaran Gardu Jati, Bandung. Spesifikasinya adalah 150x0.15. Ini adalah spesifikasi plastik yang paling tebal yang bisa kami dapatkan. Tentu akan lebih ideal bila plastik yang digunakan adalah yang lebih tebal. Di pasaran tersedia lebar mulai 80cm, 100cm, 120cm dan 150cm. Menurut FAO akan lebih baik apabila menggunakan plastik yang memiliki anti ultra-violet (UV) seperti yang digunakan di rumah rumah kaca (biasanya berwarna kuning agak kehijau hijauan). Namun kami tidak dapat menemukan plastik UV yang masih dalam kondisi kantung tubular (sisinya tidak terpotong).
Harap diperhatikan juga penanganan terhadap plastik ini. Plastik PE adalah bahan yang cukup kuat, namun apabila terlipat dapat meninggalkan goresan dan ketika terkena panas matahari dan air hujan bisa retak dan sobek. Kita tentu tidak menginginkan hal ini terjadi. Oleh karenanya kami menyarankan untuk membeli dan menangani plastik secara hati hati dalam gulungan, jangan dilipat. Dalam percobaan instalasi ini kami menggunakan plastik dirangkap dua. Hal ini disebabkan masalah ketebalan dan kekuatan. Namun ternyata aplikasi rangkap dua ini juga dirasa memiliki kekurangan yang akan kami jelaskan di bawah.

Pertama tama gelarlah alas untuk melindungi plastik dari benda benda tajam seperti batu dan ranting pohon apabila anda akan membuat di tanah lapang seperti yang kami lakukan. Tentu akan lebih baik apabila pembuatan pembangkit dilakukan di alas yang licin seperti tegel keramik. Hati hati juga terhadap benda benda metal yang anda bawa seperti sabuk, jam tangan ataupun gantungan kunci. Benda benda tersebut dapat melukai plastik, jadi tanggalkanlah dahulu benda benda tersebut dari tubuh anda.

Gambar: 10 - Menggelar Plastik PE
Gambar 10: Menggelar plastik PE


Gambar 11 - Memotong Lembar Plastik Pertama
Gambar 11: Memotong lembar pertama


Gambar 12: Memasukkan lembar ke dua
Gambar 12: Memasukkan lembar ke dua, perhatikan tali karet untuk mengikat ujung lembar ke dua.


Gambar 13: Memancing lembar ke dua
Gambar 13: Memancing lembar kedua


Teknik yang kami gunakan untuk merangkapkan plastik adalah dengan memasukkan sedikit bagian lembar ke dua dan diikat ujungnya dengan tali, kemudian ujung tali yang satu lagi dilemparkan ke ujung lembar pertama. Selanjutnya tali tinggal ditarik dan plastik lembar ke dua masuk ke dalam lembar pertama dengan mudah.

Selanjutnya setelah ke dua lembar plastik disamakan ujung ujungnya, dan lembar kedua dipotong, kini saatnya memasang gas outlet.

Tentukan salah satu ujung yang akan menjadi ujung atas dan ukurlah sepanjang 1.5 meter dari ujung tersebut dan tandai dengan spidol. Tanda tersebut harus tepat berada di tengah tengah plastik, sehingga diharapkan gas outlet tepat berada di tengah atas permukaan pembangkit.

Lubang yang akan dibuat sebaiknya lebih besar sedikit dari diameter luar dari ulir SDL (socket drat luar) gas outlet. Apabila terlalu pas dikhawatirkan ujung plastik akan tertarik ketika anda mengencangkan socket.

Gambar 14: Memasang dan mengencangkan outlet gas
Gambar 14: Memasang dan mengencangkan gas outlet.


Gambar 15: Gas outlet sudah terpasang ditempatnya
Gambar 15: Gas outlet sudah terpasang ditempatnya.


Langkah selanjutnya adalah memasang saluran kotoran, baik masuk maupun keluar. Ini adalah tahap yang perlu dikerjakan dengan hati hati karena memerlukan kerapihan agar tidak menimbulkan kebocoran.

Kami menggunakan pipa yang berbeda untuk saluran masuk dan keluar, karena pertimbangannya adalah ketersediaan bahan yang ada di gudang kebun .
Sebaiknya ukuran pipa masuk dan keluar adalah sama, kurang lebih memiliki diameter antara 10 – 15cm. Dapat menggunakan PVC dengan ukuran 4” atau 6” (namun harganya mahal) bisa juga menggunakan pipa keramik (sudah agak sulit mencarinya di kota Bandung) atau memakai ember plastik yang dipotong dasarnya dan disambung serta lain sebagainya, silahkan kreatif.
Panjang pipa kurang lebih 75 – 100cm. Masukkan setengah dari panjang pipa ke dalam 2 lembar plastik PE. Dan dengan hati hati lipat plastik menjadi satu dengan pipa (perhatikan gambar)

Gambar 16: Memasang Pipa Inlet
Gambar 16: Memasang pipa inlet

Gambar 17: Melipat bagian tepi plastik sehingga rapih dan mudah untuk di ikat
Gambar 17: Melipat bagian tepi plastik sehingga rapih dan mudah untuk di ikat

Gambar 18: Setelah dilipat, ikat dengan tali karet untuk memudahkan pengikatan selanjutnya.
Gambar 18: Setelah dilipat, ikat dengan tali karet untuk memudahkan pengikatan selanjutnya.

Gambar 19: Ikatan dimulai 25cm sebelum tepi plastik (1) menuju ke arah luar pipa (2)
Gambar 19: Ikatan dimulai 25cm sebelum tepi plastik (1) menuju ke arah luar pipa (2)

Pastikan ikatan tali karet benar benar kuat, kembali mengingatkan, banyak tali karet bekas yang karetnya rapuh dan mudah putus. Anda tidak ingin pembangkit anda bobol kan ? Ikatan dapat di rangkap untuk memperkuat simpul. Yang perlu diperhatikan juga adalah pengikatan tali karet harus saling meliputi (overlap), dan ujung plastik jangan sampai terlihat, tambahkan beberapa putaran lagi untuk memastikan sambungan kedap.

Dengan menggunakan dua lapis plastik PE kesulitannya adalah adanya udara yang terjebak diantara lembar plastik tersebut. Hal ini kami rasa dapat memperpendek umur plastik. Sayangnya hal ini baru kami sadari belakangan setelah biogas terpasang. Solusinya adalah dengan mengeluarkan udara terjebak sebanyak ketika memasangkan pipa inlet dan outlet.

Menggelembungkan Pembangkit

Setelah kedua pipa terpasang dengan baik, langkah selanjutnya adalah memindahkan pembangkit ke dalam ‘rumahnya’ yaitu parit yang telah dibuat sebelumnya. Untuk memindahkan plastik pembangkit kami menyarankan untuk menggelembungkan dahulu plastik pembangkit sehingga pembangkit dapat ‘duduk’ dengan rapih dan mengisi ruangan parit dengan baik. Selain itu fungsi penggelembungan adalah memastikan bahwa semua sambungan telah terpasang dengan baik.

Karena konsep dasar pembangkit biogas adalah anaerob atau tidak bersentuhan dengan udara bebas, terutama oksigen, maka metoda yang kami gunakan untuk penggelembungan awal adalah mengisi plastik pembangkit dengan gas buang kendaraan bermotor. Metoda lain adalah mengisi pembangkit dengan air. Namun karena ketersediaan air untuk penggelembungan terbatas, kami memilih menggunakan gas buang dari knalpot kendaraan operasional kami.
Sebelumnya pipa outlet kita tutup terlebih dahulu dengan plastik kresek dan diikat dengan tali karet. Demikian pula dengan gas outlet.

Gambar 20: Mempersiapkan kendaraan dan saluran pengisian.
Gambar 20: Mempersiapkan kendaraan dan saluran pengisian.

Gambar 21: Mulai melakukan pengisian.
Gambar 21: Mulai melakukan pengisian.

Gambar 22: Dibutuhkan sekitar 5 menit untuk memompa kantung plastik 5000 liter.
Gambar 22: Dibutuhkan sekitar 5 menit untuk memompa kantung plastik 5000 liter.

Gambar 23: Pembangkit siap untuk dipindahkan!.
Gambar 23: Pembangkit siap untuk dipindahkan!.


Karena menggunakan gas buang dari kendaraan berbahan bakar solar, plastik pembangkit sedikit ternoda oleh bercak bercak hitam dari uap gas buang. Rasanya bila menggunakan gas buang kendaraan premium, hal ini bisa dihindari.

2.3.3 Memasang Pembangkit.

Pembangkit dapat segera dipasang. Setelah terpasang pada tempatnya, kami mengisi pembangkit dengan sedikit air untuk menghindari terlipatnya plastik dan membuatnya duduk lebih enak. Pipa inlet dipasangkan pada lubang outlet dari bak mixer dan dipasangkan sumbat, sedangkan gas outlet dan pipa outlet kami biarkan tetap tertutup. Setelah pemasangan ini, pengisian sudah dapat dilakukan.

Gambar 24: Memasang pembangkit
Gambar 24: Memasang pembangkit


Proses pengerjaan yang kami lakukan membutuhkan waktu sekitar 8 hari kerja efektif. 2 hari untuk membuat bak mixer (2 HOK; hari orang kerja), 5 hari (15 HOK) untuk membuat parit pembangkit dan 1 hari (2 HOK) untuk pembuatan pembangkit. Tenaga kerja yang dibutuhkan adalah 19 HOK sampai pembangkit terpasang.

Sekitar 20 hari kemudian, terlihat bahwa gas sudah mulai di produksi. Indikatornya plastik pengembang mulai menggelembung dan keras.

Gambar 25: Biogas mulai dihasilkan
Gambar 25: Biogas mulai dihasilkan
PEMBUATAN ALAT PENUNJANG PEMBANGKIT BIOGAS

Langkah selanjutnya adalah pembuatan tanki penampung biogas, saluran biogas, termasuk jebakan uap air dan kompor biogas.

3.1 TANKI PENAMPUNG

Tanki penampung dalam desain yang kami buat minimal memiliki kapasitas 2500 liter. Namun ternyata karena keterbatasan ruang (kami menyimpan tanki penampung biogas diatas kandang sapi) kami hanya dapat membuat dengan kapasitas 1700 liter. Di masa yang akan datang kami merencanakan untuk menambah kapasitas penampungan dengan membuat satu buah lagi tanki penampung yang dihubungkan dengan sistem biogas.

Tanki penampung juga terbuat dari plastik polyurethane, yang membedakan adalah lapisan yang digunakan hanya 1 lapis. Kami rasa dengan 1 lapis saja sudah cukup untuk menahan tekanan biogas yang tidak seberapa besar.

Dimensi tanki yang kami buat adalah diameter 95cm dan panjang 250cm.
Pengerjaannya mirip dengan pembuatan pembangkit, perbedaanya hanya satu ujung saja yang diberi pipa. Untuk instalasi utama kami selalu menggunakan pipa PVC ¾”. Beberapa artikel menggunakan pipa dengan diameter ½”. Lagi lagi pertimbangannya adalah karena bahan yang tersedia di areal kebun adalah pipa ¾” yang digunakan untuk sistem irigasi kebun di musim kemarau.

Gambar 26: Membuat tanki penampung
Gambar 26: Membuat tanki penampung

Gambar 27: Ujung bawah tanki langsung di lipat dan di ikat dengan tali karet.
Gambar 27: Ujung bawah tanki langsung di lipat dan di ikat dengan tali karet.

Akan lebih baik apabila ujung bawah tanki tidak diikat langsung, tapi diberi pipa PVC yang ditutup oleh dop PVC, baru kemudian lembaran plastik diikatkan pada pipa tersebut seperti langkah sebelumnya.

3.2 SALURAN BIOGAS

Untuk pipa utama kami menggunakan pipa PVC ¾”. Sambungan dapat dibuat permanen dengan lem PVC. Tapi kami memilih metoda semi permanen yaitu dengan mengikat sambungan pipa dengan tali karet. Hanya sambungan yang penting saja yang kami beri lem. Sambungan penting ini diantaranya adalah sambungan katup bola/keran (ball valve).

Gambar 28: Sambungan pipa saluran biogas.
Gambar 28: Sambungan pipa saluran biogas.

Kami menggunakan banyak ball valve, dengan tujuan untuk memudahkan apabila ada perubahan skema saluran. Pada gambar diatas terlihat bahwa di ujung tanki juga terdapat ball valve, hal ini memungkinkan untuk tanki dipindah pindahkan tanpa mengganggu kinerja biogas secara keseluruhan.

Di sebelah kanan pada gambar diatas juga terlihat botol bekas air mineral 1.5 liter yang berfungsi sebagai water vapor (penjebak uap air) dan katup keamanan. Skema water vapor adalah sebagai berikut:

Gambar 29: Skema botol penjebak kondensasi sekaligus katup keamanan.
Gambar 29: Skema botol penjebak kondensasi sekaligus katup keamanan.

Botol penjebak ini sebaiknya diletakkan pada bagian terbawah dari saluran biogas, tepat setelah pembangkit. Hal ini dimaksudkan untuk memudahkan uap air hasil kondensasi turun dan masuk ke dalam botol. Air yang berlebihan dalam sistem dapat memampetkan saluran biogas, selain itu adanya kandungan air dalam biogas menurunkan tingkat panas api dan membuat api berwarna kemerah merahan.

Perhatikan muka air yang dibutuhkan. Kami menyarankan tinggi permukaan air dari batas bawah pipa antara 20 sampai 25 cm. Apabila terlalu rendah, gas akan mudah keluar dari air sebelum mencapai tekanan yang diinginkan. Apabila muka air terlalu tinggi, tekanan yang ada membesar dan hal ini dapat menghambat proses produksi biogas itu sendiri.

Kami sangat ingin mencoba membuat manometer untuk dapat mengontrol dan mengukur tekanan yang ada dalam sistem biogas, namun pada saat ini hal tersebut belum tercapai.

Lubang air pada botol penjebak selain berfungsi sebagai lubang pengisian juga sebagai pengatur tinggi muka air.

Gambar 30: Botol penjebak kondensasi dan katup keamanan.
Gambar 30: Botol penjebak kondensasi dan katup keamanan.

3.3 KOMPOR BIOGAS

Penggunaan biogas yang paling mudah tidak lain dan tidak bukan adalah sebagai bahan bakar dalam kegiatan masak memasak. Sebetulnya masih banyak fungsi lain yang ingin kami cobakan juga, namun karena keterbatasan waktu (dan dana tentunya ) baru kompor biogas saja yang kami cobakan. Fungsi lainnya antara lain sebagai pencahayaan (ini yang ingin segera kami coba), bahan bakar untuk menjalankan mesin, pendingin, pemanas dan masih banyak bentuk pengembangan lain. Test pertama untuk mengetahui apakah biogas yang dihasilkan dapat terbakar atau tidak, kami lakukan dengan cara menyambungkan pipa biogas ke selang yang biasa digunakan pada kompor gas LPG, kemudian diujungnya kami sambungkan dengan selang tembaga dengan diameter dalam (Internal Diameter; ID) sekitar 0.5cm. Katup gas dibuka dan ujung pipa didekatkan dengan sumber api. Api pun menyala. Hurray!.

Ada banyak desain burner yang digunakan pada kompor biogas, target kami saat membuat kompor ini adalah harus sesederhana mungkin, dapat dibuat dari bahan bahan yang tersedia dan semurah mungkin, serta .. asal jalan dulu, sebagai tahap pembelajaran.

Percobaan pertama pembuatan kompor menggunakan bahan baku kaleng bekas permen jahe yang kami temukan di dalam mobil operasional. Permennya kami habiskan dulu, baru kalengnya di pakai.

Skema desain kompor pertama ini sebagai berikut:

Gambar 31: Skema burner biogas #1
Gambar 31: Skema burner biogas #1

Cara pembuatannya adalah kaleng permen dilubangi sesuai dengan ukuran diameter luar pipa tembaga kemudian ujung pipa tembaga dimasukkan ke dalam lubang tersebut. Untuk lebih jelasnya dapat melihat skema diatas. (PERHATIAN: Desain kompor ini tidak bagus, lihat penjelasannya pada bagian kesimpulan)

Gambar 32: Kompor biogas untuk menggoreng ketela pohon.
Gambar 32: Kompor biogas untuk menggoreng ketela pohon.

Gambar 33: Api biru biogas.
Gambar 33: Api biru biogas.


4. KESIMPULAN

Kesimpulan sementara yang kami peroleh dari percobaan pembuatan dan instalasi pembangkit biogas dari kotoran sapi ini adalah kalori panas yang dihasilkan tidak cukup panas untuk bisa disebut fungsional. Hasil menggoreng ketela pohon kurang bagus karena minyak kurang panas. Singkong kurang kering dan tidak mengembang.
Kami rasa hal ini bisa disebabkan beberapa hal:

1. Tekanan gas kurang tinggi.
Percobaan penggorengan ini kami lakukan pada ketinggian muka air di botol penjebak kurang lebih 10cm (perhatikan gambar 26). Kami akan lakukan percobaan lagi pada ketinggian muka air 20 – 25cm.

2. Kandungan methane dalam biogas masih terlalu rendah.
Beberapa literatur menyebutkan, untuk biogas dapat terbakar, kandungan methane-nya minimal 50%. Karena biogas yang di hasilkan dapat terbakar, kami cukup confident untuk menyatakan bahwa kandungan methane sudah diatas 50%. Tapi karena gas terkadang tidak stabil (salah satu indikator kandungan karbon diosida tinggi) dan panas yang dihasilkan rendah, ada kemungkinan kandungan methane masih di bawah 60%.

3. Desain kompor dan burner yang kurang baik.
Kompor dan terutama burner yang kami gunakan disini masih bersifat sementara. Beberapa literatur menyebutkan juga bahwa campuran udara dan biogas cukup krusial untuk menghasilkan api yang baik. Campuran udara-biogas yang baik adalah sekitar 15:1 (15 udara dan 1 biogas). Selain itu desain kompor yang SS (sangat sederhana) ini tentu memiliki banyak heat-loss. Untuk kedepan, kami harapkan dengan desain burner dan kompor yang lebih baik hal ini dapat diatasi.

4. Faktor eksternal
Kondisi alam pegunungan yang cukup dingin (berkisar 15 – 20 derajat celcius) sedikit banyak berpengaruh terhadap suhu minyak. Selain itu hembusan angin di dalam dapur juga terasa cukup menganggu.

Kesimpulan lain yang dapat diambil dari percobaan implementasi teknologi biogas ini adalah adanya resistensi dari pengguna biogas (yang adalah ibu rumah tangga peternak, yang terbiasa menggunakan tungku kayu bakar) untuk menggunakan kompor bioga. Beberapa alasan yang dapat kami tangkap adalah faktor psikologis akan bahaya kebakaran atau meledak dan juga kecenderungan untuk memang resisten terhadap teknologi teknologi baru yang dipandang cukup rumit.
Namun setelah dilakukan pengamatan beberapa hari, kecenderungan ini perlahan lahan mulai hilang, ditandai dengan adanya laporan yang menyatakan bahwa kompor biogas hasilnya cukup bagus apabila dipakai menggoreng telur.

Akan tetapi kami cukup yakin bahwa lambat laun teknologi ini dapat diterima oleh pengguna yang ditandai bahwa mereka cukup senang dengan adanya kompor yang tidak menimbulkan polusi dan tidak merusak alat alat masak.

Hal lainnya yang terungkap adalah perawatan dan operasi sistem biogas ini memang cukup rumit, hal inilah tampaknya yang mendasari bahwa banyak instalasi biogas di negara di dunia yang kurang berhasil dalam jangka panjang.

Tujuan utama dalam implementasi biogas biasanya adalah sebagai energi pengganti yang dapat mengurangi biaya yang diperlukan untuk memasak. Nampaknya hal ini harus kita tinjau ulang secara lebih seksama. Mengapa ?. Karena faktanya, penggunaan tungku kayu bakar berbahan tanah liat membutuhkan biaya yang lebih murah dari biogas, lebih mudah dibuat, dioperasikan dan di rawat. Bila dibandingkan dengan perapian kayu bakar biasa, tungku tanah liat menggunakan bahan bakar lebih irit dan tidak menimbulkan polusi asap di dalam ruangan (karena memiliki cerobong keluar).
Sistem biogas yang profitable seharusnya di desain secara lebih terintegrasi, digunakan untuk menjalankan mesin statis yang dapat memutar generator penghasil listrik, sekaligus sebagai pabrik penghasil pupuk dan penyubur bagi kolam ikan, taman atau lahan pertanian.

Sebuah operasi biogas yang sukses, sukses dalam arti dapat menghasilkan atau menabung uang lebih banyak daripada biaya yang dikeluarkan adalah sebuah operasi bisnis. Oleh karenanya, sebuah pembangkit biogas harus dipandang sebagai bagian sebuah sistem. Sistem yang terdiri dari banyak hal, tanki penyimpan gas, kolam ikan atau tanaman air, lahan pertanian, ternak, produksi pupuk dan gas, dan sebagai bisnis serta keahlian teknis.

Dibawah ini pernyataan yang diadaptasi dari buku “Biogas and Waste Recycling, The Philippine Experience” karya Felix Maramba, seorang pengembang sistem biogas yang sukses, terkenal dan menguntungkan secara finansial.

“Pengembangan sistem biogas akan meningkatkan kehidupan sosial dan ekonomi di daerah pedesaan. Caranya adalah dengan mengendalikan polusi yang terjadi pada udara dan air, sehingga menjamin hidup yang lebih sehat. Biogas dapat meningkatkan standar hidup yang berarti juga akan meningkatkan laju perekonomian. Dengan memanfaatkan limbah dan bahan yang tersedia di daerah setempat sebagai penunjang kebutuhan pertanian, dan dengan membuat lahan semakin produktif melalui sistem daur ulang akan menimbulkan sebuah pola kehidupan pedesaan yang baik yang menunjang kemandirian.” 


jika kamu peduli global warming (klik disini)

Senin, 02 Maret 2009

Profil Kak Azrul Azwar



Sebelum menjabat sebagai Ketua Kwartir Nasional Gerakan Pramuka masa bakti 2003-2008 dan kini menjabat kembali sebagai Ketua Kwartir Nasional Gerakan Pramuka masa bakti 2008-2013, Kak Azrul Azwar yang lahir di Kotacane (Aceh Tengara), 6 Juni 1945 terlebih dulu menjabat sebagai Pemimpin Satuan Karya (Pinsaka) Bakti Husada Tingkat Nasional (1998-2003). Sempat pula mejadi Andalan Nasional sejak tahun 1998. Meski dirinya memiliki latar belakang pendidikan kedokteran, namun dunia kepramukaan bukan dunia baru bagi beliau. Sebab dalam menjalani profesinya sebagai dokter, Kak Azrul pun kerap berinteraksi dengan masyarakat luas.

Setelah mendapat gelar dokter dari Universitas Indonesia pada tahun 1972 dan memperdalam ilmu kedokteran spesialis di universitas yang sama, Kak Azrul terbang ke Honolulu, Hawaii guna menuntut ilmu dan melengkapi gelar MPH di School of Public Health University of Hawaii pada tahun 1977. Tak selesai sampai di situ saja, sebab pada tahun 1991-1996 Kak Azrul menimba ilmu kembali dan memperoleh gelar Doctor dalam ilmu kedokteran dengan hasil Judisium Cumlaude.

Selain menekuni dunia kedeokteran dan menyukai kegiatan kepramukaan, ternyata Kak Azrul hobi juga menulis, pengalaman sebagai Pemimpin Redaksi beberapa kali dijalaninya, seperti pada Majalah Kesehatan Masyarakat Indonesia-Jakarta, jabatan tersebut sudah ditekuninya sejak tahun 1984 hingga sekarang.

Ketua Umum Pengurus Besar Ikatan Dokter Indonesia (IDI) ini, tercatat aktif sebagai pengurus dilima belas organisasi, selain dalam Gerakan Pramuka dan IDI, Kak Azrul merupakan konsultan World Health Association (WHO) dan Council Member pada Medical Association of ASEAN.